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Experiments and numerical simulations have been performed to investigate the
deformation and break-up of a cloud of rigid fibres falling under gravity through
a viscous fluid in the absence of inertia and interfacial tension. The cloud of
fibres is observed to evolve into a torus that subsequently becomes unstable and
breaks up into secondary droplets which themselves deform into tori in a repeating
cascade. This behaviour is similar to that of clouds of spherical particles, though the
evolution of the cloud of fibres occurs more rapidly. The simulations, which use two
different levels of approximation of the far-field hydrodynamic interactions, capture
the evolution of the cloud and demonstrate that the coupling between the self-motion
and hydrodynamically induced fluctuations are responsible for the faster break-up
time of the cloud. The dynamics of the cloud are controlled by a single parameter
which is related to the self-motion of the anisotropic particles. The experiments
confirm these findings.

1. Introduction

The dispersion of swarms of particles occurs in natural processes of sedimentation
of silt in rivers and on the continental shelf. The process has importance for the
delivery of injected particles, such as catalysts, drugs and inoculated cells, into a
bulk medium. Most of these natural phenomena or industrial applications involve
anisotropic particles, but rod-like particles have received little attention as compared
to spherical particles. In this paper, we consider the motion of a cloud of rigid fibres
settling due to gravity in an otherwise pure liquid at low Reynolds number and in
the absence of interfacial tension.

The deformation of clouds of spherical particles has been studied since Adachi,
Kiriyama & Koshioka (1978) reported a complex evolution of the shape. A cloud
having an initially spherical shape generally evolves into a torus that subsequently
becomes unstable and breaks up into secondary droplets which deform themselves into
tori in a repeating cascade. An extensive review has been presented by Machu et al.
(2001). The cloud break-up was attributed to either inertia or to a perturbation on
the shape of the initial cloud (Nitsche & Batchelor 1997; Schaflinger & Machu 1999;
Machu et al. 2001; Bosse et al. 2005). Recent numerical simulations and experiments
by Metzger, Nicolas & Guazzelli (2007) demonstrated that the break-up occurs even
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in the complete absence of inertia and also without needing to perturb the initial
shape.

Understanding the instability requires consideration of the discrete nature of
the cloud of particles. Fluctuations arising from the multi-body character of
the hydrodynamic interactions cause particles to depart from the closed toroidal
circulation predicted by the continuum approach where the cloud is modelled as an
effective medium of excess mass. Some of the particles may thus cross the cloud
boundary and be carried into a downstream tail. Because the lost particles are those
located in the toroidal circulation rim, this depletes the central region of the cloud
and leads to the formation of a torus. The mechanism responsible for the further
expansion of the torus remains unclear, but Metzger et al. (2007) described the break-
up and showed a relationship with a change in the flow topology that occurs when
the torus reaches a critical aspect ratio.

The present work investigates the deformation and break-up of a cloud of rigid
fibres, focusing on the role of the particle anisotropy. Similar to clouds of spherical
particles, we find that an initially spherical cloud of rigid fibres slowly evolves into a
torus, which subsequently shatters into secondary droplets. However, the fluctuations
in the velocities of the fibres originating from the particle anisotropy accelerates the
break-up process as compared to clouds of spherical particles. We numerically identify
the parameter that controls the break-up time and confirm it experimentally.

The simulations involved in this study are described in §2. They have two different
degrees of approximation for the far-field hydrodynamic interactions: the point-
fibre, or “fiblet’ as we will designate it in the following, and slender-body dynamics.
The former approximates the hydrodynamic interactions between fibres as those of
point-particles and ignores short-range interactions (Mackaplow & Shaqfeh 1998;
Saintillan, Shaqfeh & Darve 2006). The latter evaluates the long-range interaction
at a higher level of approximation but, for simplicity, still does not consider the
short-range interactions such as lubrication and excluded volume effects (Harlen,
Sundararajakumar & Koch 1999; Butler & Shaqfeh 2002). The experiments are
described in §3 and compared with simulation results in §4.

2. Simulation method

The initial clouds consist of Ny rigid fibres, with length / and diameter d, distributed
randomly in space and orientation inside a prescribed spherical volume of an
unbounded fluid. The cloud settles under gravity through fluid that is Newtonian
with viscosity u. The fluid flow generated by the sedimenting particles satisfies the
Stokes equations.

2.1. Minimal description: the ‘fiblet’

This minimal model approximates the disturbance generated by fibres sedimenting in
the fluid as that of point-particles. This approximation is sound for dilute suspensions
where the distance between particles is large as compared to the length of the fibre,
and the first-order term of the perturbation (Stokeslet) to the fluid velocity dominates.
However, each particle rotates due to the velocity induced by the other sedimenting
particles, and accordingly sediments through the fluid with a velocity that depends
on its orientation.

Within this approximation, the translational velocity of particle & with position r,
and orientation p, is the sum of its settling velocity U,(p,) when in isolation and



A Sedimenting Cloud of Rigid Fibres 353

of the disturbance velocity u(r,) generated by the other fibres and evaluated at the
centre of mass:

o =Us(p,) + uy(ry). (2.1)
The settling velocity in a pure fluid is the product of the particle mobility, which is
taken from the leading order of slender-body theory (Batchelor 1970; Cox 1970), and
the buoyancy force acting upon the particle

_ InQA)F

Us(pa) T,U,l (’+papa) €, (22)

where A =1[/d is the fibre aspect ratio, I is the identity tensor and F is the magnitude
of the buoyancy force that acts along the z direction as designated by the unit vector
e.. The disturbance velocity is the sum of point-forces as derived in the Appendix:
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where r =rg —r, and |r| is the scalar length between the centres of particles o and
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The rotational velocity of the fibres, also derived in the Appendix, is influenced only
by the disturbances caused by the sedimentation of other fibres in the suspension,
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Equations (2.1)—(2.4) represent the minimal model, which is referred to as the fiblet
model because it is based upon point-particle interactions and includes the important
aspect of particle rotation.

The only difference between (2.1) and the equation given for the motion of a
cloud of point-particles by Metzger et al. (2007) is in the self-term U,(p,). Metzger
et al. (2007) ignored the self-term when calculating the dynamics of a cloud of
point-particles since it does not affect the relative motion of identical point-forces
within a cloud and thus does not alter the overall dynamics of the cloud. For clouds
of fiblets, the self-term depends on the particle orientation and generates a relative
motion between the particles; therefore, this term must be retained to give even a
qualitatively accurate solution.

Because the correct scaling of the length and time scales is not known a priori, we
choose to scale the length and velocities by the initial radius of the cloud R, and the
velocity NoF/5mtuRy of a spherical cloud of Stokeslets, respectively (Ekiel-Jezewska,
Metzger & Guazzelli 2006). The set of (2.2)—(2.4) becomes
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where c=2R(In(2A)/! and * denotes dimensionless variables. Renormalizing (2.4) in
the same manner gives
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For a sufficiently large number of particles, the governing equations for the
sedimentation velocity of fiblets reduces to the case of a cloud of Stokeslets as studied
by Metzger et al. (2007). However, the self-term prevails over the hydrodynamic
interactions between the particles as ¢ becomes large relative to Ny. Consequently,
different behaviours are expected for the cloud of fiblets, as compared to the cloud
of Stokeslets.

Integration of positions and orientations was performed using a Bulirsch—Stoer
method (Press et al. 1994). The method enforces a precision of 1x 10~ for the
centre-of-mass positions over each time step. For each simulation, the time step was
chosen such that an average particle sediments a distance of //20 when in the initial
spherical geometry with randomized positions and orientations.

2.2. Higher level of description: slender-body dynamics

Simulations are also performed with a higher level of description for the far-field
hydrodynamic interactions. The code is similar to that presented by Butler & Shaqfeh
(2002). The velocities of the N fibres are related to the forces and torques acting on
them through a mobility matrix .#,
P
=M+ , (2.7
P T
where 7 and p contain all components of the centre-of-mass and rotational velocities
for all fibres, and F and T contain the components of force and torque acting on the
fibres.

As constructed here, the mobility matrix contains the effects of far-field
hydrodynamic interactions as distributed over the full length of both fibres, as
opposed to the localization of the interactions at the centre of mass of the fibres as
done for the fiblet calculation. The simulation scheme is the same as that described
by Butler & Shaqfeh (2002), except the Oseen—Burgers tensor is used instead of
the periodic Greens function of Hasimoto (1959) to enable simulations of swarms
of concentrated particles in an infinite space. A fourth-order Runge—Kutta method
advances the particle positions and orientations in time, with the time step determined
by using an adaptive algorithm as described in Butler & Shaqfeh (2002).

This more accurate slender-body simulation requires more computational resources
than the fiblet simulation; the maximum N, for the full simulation was limited to
1000 particles, whereas 4000 particles could be calculated using the fiblet algorithm.
An aspect ratio of A =10 is used for all simulations to match the experiments as well
as to satisfy the slender-body limit.

Both codes were tested for convergence with regard to time step, and the limits
(single particle, dilute and two-particle interactions) were tested with success. Note
that for both simulations methods, interactions were not calculated between pairs of
fibres when their separation distance was smaller than one fibre diameter. We found
that including the cut-off distance for the hydrodynamic interaction is necessary,
unlike in the case of Stokeslets used by Metzger et al. (2007). Other methods for
controlling the singularities returned results similar to those when using this method,
and the results were insensitive to the exact cut-off distance.

2.3. Parameters describing the deformation

Numerical simulations were performed with initially spherical clouds comprised of
500 < Ny <4000 particles that were tracked over a typical time interval of 0 <" < 800.
To identify the time evolution of the deformation of a sedimenting cloud, we define
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some parameters such as the number of particles N that remain in the cloud, the
sedimentation rate V of the cloud and the horizontal radius R and its rate of growth
dR/dt. Because large variation exists from one run to the next for the same Ny, ten
runs for different realizations of the initial particle positions were performed. This
generates an ensemble of data over which to average the macroscopic quantities of
the cloud as a function of time ¢*. The mean values of parameters (N) and (R) are
normalized by their initial values Ny and R, respectively; the mean values of velocity
parameters (V) and (dR/dt) are normalized by NoF/5muRy. The dispersion of the
data among runs is quantified by the standard deviation.

Particles are lost from the initially spherical cloud as it sediments through the
fluid. The particles considered to belong to the cloud are those for which the vertical
position from the centre of mass of the cloud is < Ry. This yields a definition for
the particles inside the cloud N*(¢*) and, by averaging the individual velocities of
these particles, the cloud velocity V*(¢*). The horizontal radius of the cloud R*(¢%)
is calculated by dividing the cloud into four quadrants, measuring the maximum
distance in the direction perpendicular to gravity of a particle from the centre of
mass of the cloud, and averaging over the four values. Though alternatives can be
proposed for quantifying the cloud radii, this option provides a method that is similar
to that used for the experiments.

3. Experimental techniques

The experimental set-up and techniques are similar to those used by Metzger et al.
(2007) where further detail can be found. The vessel has a width of 9.8 cm, a
depth of 4cm, and a filled height of 100 cm. The rigid fibres are made of copper
with a dimension of /=0.127 +0.013 cm and d =0.0149 + 0.0020 cm, and density
p,=8.97+0.03 g cm~>. For these fibres, the aspect ratio is A ~8.5. The fluid is a
mixture of 50 % by volume Ucon oil supplied by Chempoint and 50 % distilled water,
and has a density p =1.079+0.19 g cm—3 and a dynamic viscosity pu = 2170+ 60 cP.
With this combination of fluid and fibres, the typical Reynolds number, as based
upon the radius and sedimentation velocity of the cloud, is less than 1072,

The suspension of rigid fibres is prepared with a desired volume fraction ¢ in a
small beaker. Clouds are produced by injecting a given volume of suspension at the
top of the filled container using a syringe. The shape of evolution of the clouds is
recorded with a digital video camera CANON XM?2 mounted on a vertical sliding
rail. Homogeneous lighting is ensured by backlighting the vessel using a neon tube
while placing a double layer of tracing paper to the back wall of the container.

The supplementary movies (available at journals.cambridge.org/FLM) are analysed
with ImageJ (digital imaging software available at http://rsb.info.nih.gov/ij/). Each
image is thresholded and the cloud contour is fitted with an ellipse. This provides
the position of the centre of mass and the horizontal R dimension of the cloud. The
instantaneous cloud velocity V is measured from two successive frames. The initial
dimension R, and velocity Vj of the experimental cloud are used to normalize the data
in the same way as in the simulations. Statistics were obtained as in the numerical
simulations by doing several runs (typically five).

4. Results and comparisons

As evident from the fiblet model (see § 2.1), the settling behaviour of a spherical cloud
depends strongly on the value of ¢/Ny. For large ¢/Ny, the self-term overwhelms
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the hydrodynamic interactions between particles and the fibres behave as when in
isolation. In the other limit of ¢/Ny =0, the governing equations become identical to
the case of a cloud of Stokeslets and the cloud behaves accordingly. We are interested
in the regime where ¢/Ny < 1 so that the hydrodynamic interactions prevail, yet the
values of ¢ are large enough for the self-term, and thus the anisotropy of the particles,
to have a substantial influence on the evolution of the cloud.

Figure 1 illustrates the typical evolution of a cloud of fibres versus time in the
experiments and the fiblet simulations which have been undertaken in the range
0.01 <¢/No<0.1 (see supplementary movies). This evolution closely resembles that
of a falling cloud of spheres which has been successfully modelled by Stokeslets
(Metzger et al. 2007). The initially spherical cloud begins to lose particles at a slow,
steady rate while falling through the viscous fluid. The cloud continuously expands in
the direction perpendicular to gravity and transitions into a toroidal shape. This torus
eventually fractures into multiple droplets of particles (usually into more than two
droplets in contrast with a cloud of spheres which mostly breaks up into two). Each
of these droplets can destabilize again in a repeating cascade if the cloud contains a
large enough number of particles.

In figure 2, the mean value of the break-up time, (7;), estimated as the normalized
time for which the torus starts to bend before breaking, is plotted versus ¢ and
¢/No. The major trend seen in figure 2(a) is that (¢;) declines with increasing c,
i.e. with increasing prominence of the self-term. The two simulation methods give
similar results. As found for the falling cloud of spheres (or Stokeslets, i.e. ¢ =0),
(t;) increases with Ny. By plotting (z,) versus ¢/Ny in figure 2(b), the numerical data
corresponding to both simulation methods collapse onto the same curve. Excellent
quantitative agreement is found between simulations and experiments.

In this latter figure, in addition to the present experimental data obtained for
A =8.5, we have also included experimental data from figure 3(b) of Metzger et al.
(2007). These data, obtained for A=1 and for ¢/Ny=~0.01, also collapse onto the
master curve. These results from two different values of A strengthen the finding from
the simulations that the break-up time depends solely on ¢/Ny. Additional tests with
moderately higher aspect ratios, such as A = 30, are feasible, but would reveal little
as the fundamental parameter ¢ has a weak logarithmic dependence on A4; problems
caused by the bending of our fibres at very large aspect ratios unfortunately prevent
experiments on a wider range of parameters. Note that for the ¢/Ny examined in the
experiments, the volume fraction of the cloud ranges from 1 to 10 %.

The decrease of the break-up time with increasing c is linked to the faster growth of
the horizontal radius of the cloud, R", with increasing c, i.e. with increasing importance
of the self-term. This is evidenced in figure 3(a) by comparing the simulation results
for ¢ =40 and 80. Good agreement is found between experiments and simulation
results having similar ¢/Ny despite large variations among runs.

Another distinct feature of falling clouds of rigid fibres, as compared to clouds of
spheres, is seen in the evolution at the start of sedimentation; see figure 3(b). The
initial sedimentation rate (V) is slightly faster than that of a cloud of Stokeslets with
the same R, and a sufficiently large number of Ny owing to the contribution of the
self-term. At short times after the start of sedimentation, (V") rapidly increases to a
maximum value (which is more pronounced for larger ¢) then decreases continuously,
while (V") of the Stokeslet cloud only declines (Metzger et al. 2007). This initial
increase in (V”) is caused by a combination of the change in orientation distribution
and a compaction of the cloud at short times as reflected by the small initial decrease in
(R*). This initial feature does not seem to be observed in the experiments. While there
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FiGURe 1. Typical evolution of a cloud of rigid fibres. (a) Experiment with Ny~ 1000 and
¢~ 30, which corresponds to a cloud volume fraction of 5%. (b) The fiblet algorithm for
¢=40 and Ny=1000. The side views are accompanied by bottom views on the small side
pictures. The complete dynamics coming from different runs are shown in the supplementary
movies.
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FIGURE 2. Mean value of the break-up time, (#;), vs. (a) ¢ and (b) ¢/Ny. The error bars
correspond to the variance between runs.
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FiGure 3. Simulation results for the time evolution of (a) the mean horizontal radius of the
cloud, (R*), and (b) the cloud settling velocity, (V*) for clouds having No=1000. The two
figures also show the values of R* and V* for five individual experimental runs. The dashed
lines are guidelines for comparison with the initial radius and velocity of the cloud.

is a considerable variation among runs, the further decrease of (V") is comparable in
experiments and simulations having the same ¢/ Np.

The influence of the self-term on the rate of growth of the cloud, (dR*/dr”), is
examined with more detail in figure 4 for the fiblet simulations. Figure 4(a) shows
the evolution of (dR*/dt*) for ¢ =10 according to each contribution: the self-term
and the hydrodynamic term in (2.5). Comparing each contribution, the hydrodynamic
term controls (dR*/dt") and the self-term seems to contribute only relatively small
fluctuations. However, even being small, the self-term contribution is fundamental to
the accelerated break-up of clouds of fibres as compared to clouds of spheres. The
value of (dR*/dr*) fluctuates between negative and positive values as the fibres tumble
within the cloud, but the overall value becomes positive (indicating an expansion of
the horizontal radius) and increases rapidly just prior to break-up of the unstable
torus in stark contrast with the situation shown in figure 4(b) in which the self-term
has been removed as in a Stokeslet cloud (¢ =0).



A Sedimenting Cloud of Rigid Fibres 359

(b

a
@ 0.015
r . 0.010 - h
0010 " Total = self + hydrodynamic H
: — Self term H
A~ t —- Hydrodynamic term I
*‘_a ] 0.005 - " ! \ h
> 0.005 - INF . ) . ,’ - ‘/'"\Jl, ‘\‘ ! \ ’/'\\\
% ]I t /\\"' ﬁ'\ ;If*’;" I ;\'-.i\"\: i Q'\;';Ji H ! ! \ R i { \
N roa Vo T | SN 1 ! [ FAR P T Y
i \\ ] vt () he ! Vo \ AN AY 7 Ll ’/\
0 [ R Y S R N R VA A N A
g ' 1 1 \
.‘\)1 ‘\ ] v i1 ]’ ‘l ,| “ ! \‘ ‘1
v v « | 1 \/
!
\
—0.005 L —0.005 . ‘
0 50 100 0 50 100

FIGURE 4. Time evolution of (dR*/d¢”*) resulted from fiblet simulations with Ny =500 and
(a) c=10 and (b) ¢=0. Results are shown according to contributions from (2.5).

025
020 |- ]
2015 o= .
I _ 0
- ) . (1
~ol0fL 7 20
— 40
4
0.05 |- ]
0 80 160 240 320 400

t

FIGURE 5. Fraction, 1 — N*, of particles that have leaked away from the cloud vs. time ¢* for
fiblet simulations having Ny = 1000.

Finally, we have examined the fraction, 1 — N*, of particles that have leaked away
from the cloud versus time ¢* in figure 5 for the fiblet simulations. Clearly, the rate
of leakage does not vary with ¢. This shows that the time evolution of the fraction
of particles escaping from a cloud of fibres follows the same behaviour as that found
from a cloud of spheres which has been examined in detail by Nitsche & Batchelor

(1997) and Metzger et al. (2007).

5. Conclusions
We have studied the sedimentation of a cloud of rigid fibres through numerical
simulations and experiments. The general evolution of the cloud deformation is
found to be qualitatively similar to that of a cloud of spheres. However, quantitative
differences in the time evolution are observed. For example, the particle anisotropy
accelerates the expansion of the cloud and leads to a faster break-up.

Two simulations having different levels of approximation for the far-field
hydrodynamic interactions, the fiblet and the slender-body, are performed and found
to give similar results. These simulations demonstrate that the dynamics of the
cloud are controlled by a single parameter, c¢/N,, which is related to the self-term
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contribution to the motion of the anisotropic particles. The experiments confirm these
findings.

Note also that the fiblet simulation, which contains the minimal physics, captures
the cloud dynamics extremely well. The success of this minimal description indicates
that (i) the first-order term of the far-field hydrodynamic interactions between the
particles is sufficient and (ii) including the short-range interactions is not necessary
for the range of volume fractions used in the experiments. It is indeed interesting
to note that this later range extends from the dilute to the semi-dilute regime as
0.16 < n(l/2)* < 1.6 where n is the number of particles per unit volume.

This work was supported by the National Science Foundation through a CAREER
Award (CTS-0348205). Visits were supported by the Partner University Fund on
‘particulate flows” and by Aix-Marseille Université (U1) visiting professorships.

Supplementary movies are available at journals.cambridge.org/FLM.

Appendix. Formulation of the fiblet approximation

Slender-body theory (Moran 1963; Batchelor 1970; Cox 1970) is assumed to describe
the motions of the high aspect fibres sedimenting in the Newtonian fluid under Stokes
conditions, or vanishing Reynolds number. At the leading order of approximation
within the slender-body equations, the centre-of-mass velocity of a fibre « is

In(2A)F 1 [

a=———1( : 7 a \Fa « d as Al
2 dpd (I+p.p.) ez—i-l/_l/zu (ro + sapy) ds (A1)
where u,(r, + s«p,) is the fluid velocity evaluated at position r, + s, p, along the
centreline of fibre @. The coordinate s, is set such that —//2 <s, <//2 and 5, =0 at
the centre of mass. The rotational velocity of the fibre « is

12 2
b= = pup) [ wlratsn)sds, (A2)
where the external torque on the fibre is zero.

In an otherwise quiescent fluid, the fluid velocity at a position on fibre « is generated
by the sedimentation of the other fibres, labelled 8, in the suspension. This velocity
is calculated by summing the disturbance created by distributing Stokeslets along the
centreline of each fibre 8 (Harlen et al. 1999; Butler & Shaqfeh 2002) as

No 1/2
o (Fo +SuPy) =D /Z/zJ (rg+ssps —ra—Suby) - f (s5) dsg, (A3)
BFa ¥

where J is the Oseen—Burger tensor and f(sg) is the line force density of Stokeslets
on fibre B. The description of the dynamics is completed by specifying that the
fibres are torque-free, [szf(ss)dss=0, and acted on by a net buoyancy force,
J fp(sp)dss = Fe..

Equations (2.1)—(2.4) are developed by linearizing both the velocity on fibre « and
the velocity generated by fibre 8 about their respective centres. For particles that are
widely separated, the velocity variation along the length of the fibre varies little and
can be approximated by two terms of the Taylor series about the centre of mass,
sq =0,

ou

u (ro +saPy) u(re) + sq | (A4)
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Using this approximation gives

_ In(2A)F
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Likewise, the velocity disturbance at r, due to the force applied at point sz on a fibre
B is linearized about the centre. Integrating along the length of fibre 8 and summing
over all fibres 8 as designated in (A 3) gives

No 1/2 ad
uy (ro + sape) 22/1/2 J(ra + SuPy —Tp) + 58 @ . 4| o f (s,g) dsg.
,B#Dt - FaTSaPy—TB
(A7)

The second term in the expansion makes no contribution to u.(r, + s,p,) and
higher-order terms are ignored. Consequently, (A 7) becomes

No

u, (ra—l—sapa)zZJ(ra—i—s(,pa—rﬂ)-Fez, (A8)
i

where the approximation removes the dependence of the velocity on fibre @ upon the
orientation of fibre 8. Substituting this approximation into (A 5) with s, =0 results
in (2.1)—(2.3). Substituting (A 8) into (A 6) to calculate the rotational velocity within
the approximation gives

P, = (I_papoz) e 'FeZ' (A9)

Calculating the gradient of the Oseen—Burger tensor and evaluating at r = r, —rg
gives
o
08q |,

where |r| is the distance between centres. Placing this relation in (A 9) gives (2.4), the
rotational velocities for the fibres as used for the ‘fiblet’ simulations.

(A 10)
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